Surface Mount

Monolithic Amplifier

LEE2-6+

 50Ω DC to 7 GHz

The Big Deal

- Low Noise figure, 2.3 dB at 2 GHz
- Low Current, 16 mA
- · Broadband matched

CASE STYLE: MC1630-1

Product Overview

LEE2-6+ (RoHS compliant) is wideband current driven amplifier fabricated using HBT technology. In addition, the LEE2-6+, has good input and output return loss over a broad frequency range without the need for external matching components. Lead finish is Tin Silver over Nickel. It has repeatable performance from lot to lot and is enclosed in a 2mm x 2mm x 0.89mm 6-lead MCLP package for very good electrical performance.

Key Features

Feature	Advantages
Broadband, DC* to 7 GHz (* Low frequency cut off determined by external coupling capacitors)	A single amplifier covering DC* to C band. • Reduced component inventory • Ideal for wideband applications such as instrumentation and military
Low Noise Figure: 2.3 dB at 2 GHz	Low noise figure and low current (16mA) is ideal for use as an LNA in receivers
High Gain, 18.9 dB at 2 GHz	Minimizes the effect of NF of succeeding stages.
MCLP Package	Low inductance, repeatable transitions, excellent thermal pad.

Monolithic Amplifier

DC-7 GHz

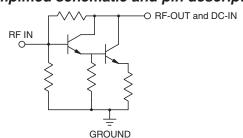
Product Features

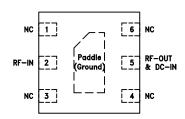
- Wideband, DC-7 GHz
- Internally Matched to 50 Ohms
- Noise figure, 2.3 dB at 2 GHz
- Low current, 16 mA

CASE STYLE: MC1630-1

57.62 51122. W61666

+RoHS Compliant
The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications


Typical Applications


- Cellular
- PCN instrumentation
- VHF/UHF receivers/transmitters

General Description

LEE2-6+ (RoHS compliant) is wideband current driven amplifier fabricated using HBT technology. In addition, the LEE2-6+, has good input and output return loss over a broad frequency range without the need for external matching components. Lead finish is Tin Silver over Nickel. It has repeatable performance from lot to lot and is enclosed in a 2mm x 2mm x 0.89mm 6-lead MCLP package for very good electrical performance.

simplified schematic and pin description

Function	Pin Number	Description
RF IN	2	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
RF-OUT and DC-IN	5	RF output and bias pin. DC voltage is present on this pin; therefore a DC blocking capacitor is necessary for proper operation. An RF choke is needed to feed DC bias without loss of RF signal due to the bias connection, as shown in "Recommended Application Circuit".
GND	Paddle	Connections to ground.
NC	1,3,4,6	No connnection. Use via holes as shown in "Suggested Layout for PCB Design" to reduce ground path inductance for best performance.

Electrical Specifications¹ at 25°C and 16mA, unless noted

Parameter	Condition (GHz)	Min.	Тур.	Max.	Units
Frequency Range		DC ²	,	7.0	GHz
Gain	0.01	_	21.5	_	dB
	1.0	_	20.6	_	
	2.0	17.1	18.9	21.1	
	4.0	_	15.3	_	
	6.0	_	12.2	_	
	7.0	<u> </u>	10.8	_	
Isolation	2.0		22.5		dB
Input return loss	0.01		29.9		dB
	1.0		21.3		
	2.0		16.0		
	4.0		11.7		
	6.0		9.3		
	7.0		8.4		
Output return loss	0.01		36.6		dB
	1.0		17.0		
	2.0		13.4		
	4.0		11.6		
	6.0		11.0		
	7.0		10.4		
Output IP3	0.01		18.9		dBm
	1.0		16.5		
	2.0		17.6		
	4.0		17.8		
	6.0		15.3		
	7.0		14.5		
Output power @ 1dB compression	0.01		4.3		dBm
	1.0		2.9		
	2.0		2.8		
	4.0		3.1		
	6.0		2.2		
	7.0		1.2	_	
Noise figure	0.01		2.4		dB
	1.0		2.2		
	2.0		2.3		
	4.0		2.5		
	6.0		2.9		
	7.0		3.1		
Device Operating Current (Ibias)			16		mA
Device Voltage (V _D)			3.6		V
Device Voltage Variation vs Temperature at 16mA			-3		mV/°C
Device Voltage Variation vs Current at 25°C			10.6		mV/mA
Thermal Resistance, Junction-to-case ³			95		°C/W

Measured on Mini-Circuits Characterization test board TB-621+. See characterization test circuit. (Fig. 1)
 Low frequency cut-off determined by external coupling capacitor.

Absolute Maximum Ratings⁴

Parameter	Ratings		
Operating temperature	-40°C to 85°C		
Storage temperature	-65°C to 150°C		
Operating current	50 mA		
Power dissipation	200 mW		
Input power (5 minutes max.)	29 dBm		
Input power (continuous operation)	See Fig. 3		

Pin(continuous operation) vs. Frequency (Same as P10dB)

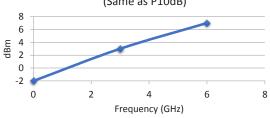


Fig 3. Power Input vs. Frequency

Case is defined as ground lead.
 Permanent damage may occur if any of these limits are exceeded.
 These ratings are not intended for continuous normal operation.

Characterization Test Circuit

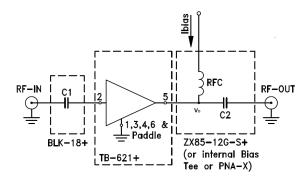
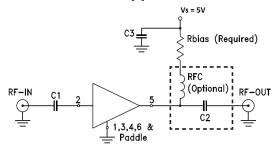



Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Test Board TB-621+. Gain, Return Loss, Output Power at 1 dB Compression (P1 dB), Output IP3 (OIP3) and Noise Figure measured using key signal N5242A, PNA-X microwave network analyzer. Conditions:

- 1. Ibias=16mA
- 2. Gain and Return loss: -25dBm
- 3. Output IP3: Two tones, spaced 1 MHz apart, -8 dBm/tone at output.

Recommended Application Circuit

Component	Value	Size	Part Number	Manufacturer
C1, C2	2400 pF	0805	_	Various
RF C	_	0.15"X0.15"	TCCH-80+	Mini-Circuits
Rbias	93.1Ω	0402	_	Various
C3	0.1µF	0805	_	Various

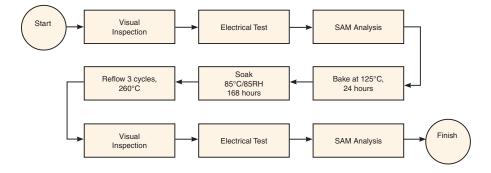
Fig 2. Evaluation Board TB-899+ includes case, connectors and components soldered to PCB.

Product Marking

Marking may contain other features or characters for internal lot control

Additional Detailed Technical Information additional information is available on our dash board. To access this information click here		
	Data Table	
Performance Data	Swept Graphs	
	S-Parameter (S2P Files) Data Set (.zip file)	
Case Style	MC1630-1, Plastic package, lead finish: tin-silver over nickel	
Tape & Reel	F108	
	7" Reels with 20, 50, 100, 200, 500, 1K, or 2K devices	
Suggested Layout for PCB Design	PL-349	
Evaluation Board	TB-899+	
Environmental Ratings	ENV08T1	

ESD Rating


Human Body Model (HBM): Class 1C (1000 to <2000V) in accordance with ANSI/ESD STM 5.1 - 2001

Machine Model (MM): Class M2 (100V) in accordance with ANSI/ESD STM5.2-1999

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL Test Flow Chart

